Minimum Cost Homomorphisms of Digraphs

نویسنده

  • G. Gutin
چکیده

For digraphs D and H , a mapping f : V (D)→V (H) is a homomorphism of D to H if uv ∈ A(D) implies f(u)f(v) ∈ A(H). For a fixed directed or undirected graph H and an input graph D, the problem of verifying whether there exists a homomorphism of D to H has been studied in a large number of papers. We study an optimization version of this decision problem. Our optimization problem is motivated by a realworld problem in defence logistics and was introduced very recently by the authors and M. Tso. Suppose we are given a pair of digraphs D,H and a positive cost ci(u) for each u ∈ V (D) and i ∈ V (H). The cost of a homomorphism f of D to H is ∑ u∈V (D) cf(u)(u). For a fixed digraph H , the minimum cost homomorphism problem MinHOMP(H) is, for an input digraph D, to verify whether there is a homomorphism of D to H and, if it does exist, to find such a homomorphism of minimum cost. We introduce a general approach for showing that MinHOMP(H) is polynomial time solvable for some digraphs H . Using this method, we prove that MinHOMP(H) is polynomial time solvable when H is an acyclic multipartite tournament. This and other results allow us to obtain dichotomy classifications of computational complexity of MinHOMP(H) when H is a semicomplete m-partite, m ≥ 3, digraph or a bipartite tournament.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Dichotomy of Minimum Cost Homomorphism Problems for Digraphs

The minimum cost homomorphism problem has arisen as a natural and useful optimization problem in the study of graph (and digraph) coloring and homomorphisms: it unifies a number of other well studied optimization problems. It was shown by Gutin, Rafiey, and Yeo that the minimum cost problem for homomorphisms to a digraph H that admits a so-called extended MinMax ordering is polynomial time solv...

متن کامل

Minimum cost homomorphisms to locally semicomplete digraphs and quasi-transitive digraphs

For digraphs G and H, a homomorphism of G to H is a mapping f : V (G)→V (H) such that uv ∈ A(G) implies f(u)f(v) ∈ A(H). If, moreover, each vertex u ∈ V (G) is associated with costs ci(u), i ∈ V (H), then the cost of a homomorphism f is ∑ u∈V (G) cf(u)(u). For each fixed digraph H, the minimum cost homomorphism problem for H, denoted MinHOM(H), can be formulated as follows: Given an input digra...

متن کامل

Minimum Cost Homomorphisms to Locally Semicomplete and Quasi-Transitive Digraphs

For digraphs G and H , a homomorphism of G to H is a mapping f : V (G)→V (H) such that uv ∈ A(G) implies f(u)f(v) ∈ A(H). If, moreover, each vertex u ∈ V (G) is associated with costs ci(u), i ∈ V (H), then the cost of a homomorphism f is ∑ u∈V (G) cf(u)(u). For each fixed digraph H , the minimum cost homomorphism problem for H , denoted MinHOM(H), can be formulated as follows: Given an input di...

متن کامل

Duality for Min-Max Orderings and Dichotomy for Min Cost Homomorphisms

Min-Max orderings correspond to conservative lattice polymorphisms. Digraphs with Min-Max orderings have polynomial time solvable minimum cost homomorphism problems. They can also be viewed as digraph analogues of proper interval graphs and bigraphs. We give a forbidden structure characterization of digraphs with a Min-Max ordering which implies a polynomial time recognition algorithm. We also ...

متن کامل

Minimum Cost Homomorphisms to Semicomplete Bipartite Digraphs

For digraphs D and H, a mapping f : V (D)→V (H) is a homomorphism of D to H if uv ∈ A(D) implies f(u)f(v) ∈ A(H). If, moreover, each vertex u ∈ V (D) is associated with costs ci(u), i ∈ V (H), then the cost of the homomorphism f is ∑ u∈V (D) cf(u)(u). For each fixed digraph H, we have the minimum cost homomorphism problem for H. The problem is to decide, for an input graph D with costs ci(u), u...

متن کامل

Minimum Cost Homomorphisms to Reflexive Digraphs

For digraphs G and H, a homomorphism of G to H is a mapping f : V (G)→V (H) such that uv ∈ A(G) implies f(u)f(v) ∈ A(H). If moreover each vertex u ∈ V (G) is associated with costs ci(u), i ∈ V (H), then the cost of a homomorphism f is ∑ u∈V (G) cf(u)(u). For each fixed digraph H, the minimum cost homomorphism problem for H, denoted MinHOM(H), is the following problem. Given an input digraph G, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005